ИНТУИЦИОНИЗМ

- совокупность философских и математич. идей и методов, рассматривающих математику как науку об умственных построениях. С точки зрения И., основным критерием истинности математич. суждения является интуитивная убедительность возможности построения мысленного эксперимента, связываемого с этим суждением. Поэтому в интуиционистской математике отвергается теоретико-множественный подход к определению математич. понятий, а также нек-рые способы рассуждения, принятые в классич. логике.

Истоки И. можно проследить еще в античной математике, а позднее в высказываниях таких ученых, как К. Гаусс (С. Gauss), Л. Кронекер (L. Kronecker), А. Пуанкаре (Н. Poincare), А. Лебег (Н. Lebesgue), Э. Борель (Е. Borel). Начиная с 1904 в ряде статей выступил с развернутой критикой нек-рых концепций классич. математики Л. Э. Я. Брауэр (L. E. J. Вrоuwer). В основе этой критики лежит обсуждение статуса существования в математике: в каком смысле следует считать установленным существование актуально заданного бесконечного множества и могут ли быть построены в виде потенциально осуществимой конструкции такие объекты исследования, как неизмеримое множество действительных чисел, нигде не дифференцируемая функция? Естественно предположить, что можно построить произвольное натуральное число в виде последовательного ряда однородных предметов, напр. ряда параллельных черточек. В рамках такой же идеализации можно допустить, что, построив нек-рое натуральное число, можно построить затем и следующее добавив к уже построенному еще одну черточку. Но, возникает вопрос о том, с какого рода построением связано множество всех действительных чисел или множество всех натуральных чисел как единый объект исследования.Современные физич. воззрения также как будто не дают оснований полагать, что в окружающем нас мире актуально существуют бесконечные множества объектов. Есть серьезные основания считать, что объекты, существевание к-рых устанавливается без использования абстракции актуальной бесконечности, а лишь в рамках гораздо более скромной абстракции потенциальной осуществимости, имеют более непосредственное отношение к реальной действительности. Однако при обычной теоретико-множественной трактовке не делается никакого различия между объектами, существование к-рых можно подтвердить с помощью нек-рого потенциально осуществимого построения, и абстрактными теоретико-множественными объектами исследования. Способы установления свойств обоих типов объектов в классич. математике основаны на законах логики, возникших в результате экстраполяции законов, верных для конечных совокупностей, на бесконечные множества. В области бесконечного эти законы не ориентированы на эффективное построение объектов, существование к-рых утверждается. Фактически такое положение дел приводит к появлению в математике так наз. "теорем чистого существования", в к-рых утверждается существование нек-рых объектов и в то же время не указывается никакого способа отыскания этих объектов. Такова, напр., известная теорема классич. анализа, утверждающая, что всякая непрерывная действительная функция, заданная на замкнутом ограниченном множестве, имеет максимум. Обычное доказательство этой теоремы не дает никаких указаний на метод построения искомого максимума. Это обстоятельство может и не смущать теоретико-множественно настроенного математика: он может считать, что максимум "есть" у всякой функции рассматриваемого класса, независимо от того, можно его отыскать в каждом частном случае или нет, "есть" как объект нек-рого воображаемого мира ("платонистского мира", см. [6], с. 399). Однако такой подход не удовлетворяет, если принять во внимание возможности субъекта-иеследователя. Имеется ли способ отыскания максимума, и если этот способ не указан, то в каком смысле верно, что максимум существует у всякой функции рассматриваемого класса? Известно, сколь трудной является задача поиска экстремума у функций даже весьма узкого класса (многочлены с рациональными коэффициентами от нескольких переменных), и, что существенно, указанная теорема нисколько не помогает в решении этой задачи. Заметим, что описанная выше критика классич. математики не связана непосредственно с антиномиями теории множеств. Появление антиномий можно рассматривать как дополнительный довод в пользу неудовлетворительности теоретико-множественного подхода, но критика относится и к таким разделам математики, где антиномий, не возникает.

Описанная критика теоретико-множественного подхода к математике исторически привела к возникновению двух путей преодоления трудностей в обосновании математики - интуиционизма Л. Э. Я. Брауэра и формализма Д. Гильберта (D. Hilbert). Обе концепции, развиваясь, оказывают в настоящее время (1970-е гг.) значительное влияние друг на друга. Так, при обосновании непротиворечивости формальных теорий необходимо уточнить приемы содержательных умозаключений в метаматематике, что делается обычно в рамках тех или иных интуиционистских концепций. С другой стороны, именно с помощью формализации метода удалось получить ряд важнейших результатов о логике интуиционизма.

Интуиционистская математика есть наука об интуитивно убедительных мысленных построениях. Сам Л. Э. Я. Брауэр трактовал эту интуитивную убедительность идеалистически, рассматривая мысленные построения как таковые "безотносительно к таким вопросам о природе конструируемых объектов, как вопрос, существуют ли эти объекты независимо от нашего знания о них" (см. [1]). Однако возможно и материалистич. толкование "интуиции" И. как наглядной умственной убедительности простейших конструктивных процессов реальной действительности. И независимо от философских установок, конкретные математич. результаты, относящиеся к интуиционистской математике и логике, представляют большую научную ценность.

При построении интуиционистской математики обычные логич. связки, употребляемые для формулировки математич. суждений, истолковываются способом, отличным от классического. Суждение считается истинным, только если исследователь имеет возможность его доказать. Доказательство же всегда связано с построением нек-рой мысленной конструкции. Так, утверждение, начинающееся с квантора существования E хА (х), может быть доказано только путем построения объекта х, для к-рого доказывается суждение (х). Дизъюнкция ИНТУИЦИОНИЗМ фото №1суждений Аи Всчитается доказанной, только если исследователь располагает методом доказательства одного из суждений Аили В. С этой точки зрения суждение вида ИНТУИЦИОНИЗМ фото №2 может быть и не истинным, если проблема Ане решена и не опровергнута к настоящему времени. Отсюда видно, что исключенного третьего закон неприемлем в интуиционистской математике в качестве логич. принципа. Истинное математич. суждение представляет собой сообщение о выполненных построениях, и эффективный характер этих построений предполагает использование особой интуиционистской логики, отличной от классической. При этом эффективность в И. понимается достаточно широко, она не обязательно связана с наличием алгоритма в точном понимании этого термина и может носить, напр., характер историч. наступления события, зависеть от фактич. решения проблем, от физич. факторов.

Объектами исследования интуиционистской математики являются прежде всего конструктивные объекты, такие, как натуральные числа, рациональные числа, конечные множества конструктивных объектов, заданные списком своих элементов. Своеобразным объектом исследования являются так наз. свободно становящиеся последовательности (с. с. п.; в другой терминологии - последовательности выбора). С. с. п. можно представлять себе как функцию, определенную на натуральном ряде, принимающую в качестве значений объекты исследования некоторого класса (в простейшем случае - натуральные числа) и такую, что всякое ее значение эффективно становится доступным исследователю. Точный анализ показывает, что следует различать несколько видов с. с. п. в зависимости от степени информации, известной исследователю относительно с. с. п. Так, если полностью известен закон образования с. с. п., напр, в виде записи соответствующего алгоритма, то такую с. с. п. наз. заданной законом. Другой крайний случай имеет место, если в каждый момент времени исследователю известен лишь нек-рый начальный отрезок с. с. п. и нет никакой информации относительно ее дальнейшего поведения; такие с. с. п. наз. беззаконными. Эти различия, игнорируемые в классич. математике, в интуиционистской математике могут быть отражены посредством точных математич. принципов, свидетельствующих о разных способах обращения с такими с. с. п. Наконец, объектами исследования интуиционистской математики могут быть и так наз. интуиционистские виды. Вид - свойство, к-рым, могут обладать объекты исследования. Объекты, удовлетворяющие этому свойству, наз. элементами вида, или его членами. Во избежание появления антиномий среди видов можно ввести иерархию, подобную типов теории, а именно, требовать, чтобы элементы вида были определены независимо от определения самого вида. Разумеется, при широком введении видов в интуиционистскую математику в ней возникают проблемы, характерные для абстрактной теории множеств, такие, как предикативность, возникновение антиномий и т. п. Следует, однако, иметь в виду, что, с одной стороны, обращение с видами во многом отлично от обращения с множествами в классич. математике и, с другой стороны, в практически разрабатываемой интуиционистской математике виды занимают весьма скромное место. В действительности подавляющую часть результатов можно сформулировать и доказать вообще без употребления видов как самостоятельных объектов исследования. Это связано с естественной тенденцией И. рассматривать в качестве объекта исследования эффективно конструируемые или эффективно порождаемые объекты. В рамках И. рассматриваются и другие, "нетрадиционные" объекты. Перспективным оказалось изучение эффективных функционалов конечного типа, с помощью к-рых в рамках И. удалось построить интерпретацию для классич. анализа [П. С. Новиков, К. Гёдель (К. Godel), К. Спектор (С. Spector)].

Отказ от рассмотрения актуально заданных бесконечных множеств и требование эффективности всех осуществляемых построений приводят к тому, что нек-рые разделы традиционной математики приобретают в И. весьма необычный вид. Числовой континуум трактуется не как совокупность отдельных точек, а как "среда становления", поток измельчающихся рациональных интервалов. Каждое отдельное интуиционистское действительное число определяется с. с. п., значениями к-рой являются неограниченно уменьшающиеся вложенные друг в друга рациональные интервалы. В рассуждениях об интуиционистском числовом континууме применяются такие специфич. принципы, как бар-индукция и теорема о веере. Следствием этого является, напр., то обстоятельство, что в естественной системе понятий всякая интуиционистская действительная функция, определенная на отрезке, равномерно непрерывна. Интуиционистская математика является достаточно разработанным направлением в математике, содержащим много продвинутых результатов, в том числе и в таких областях, как теория меры, функциональный анализ, топология, теория дифференциальных уравнений.

Несколько в стороне от этих исследований стоит попытка Г. Вейля (Н. Weyl, 1918) построить математику на основе предикативного подхода. Соглашаясь в целом с интуиционистской критикой, Г. Вейль предложил ограничиться конструктивными объектами исследования и задавать множества в виде условий в нек-ром языке, определяемом таким образом, чтобы не нарушалась предикативность определения множеств. Впоследствии Г. Вейль присоединился к развитой интуиционистской концепции построения математики, его взгляды положили начало глубоким исследованиям в основаниях математики.

Считая критерием верности построений прежде всего интуицию и в противовес формализму,

Л. Э. Я. Брауэр возражал против попыток формализации интуиционистской математики и, в частности, интуиционистской логики. Однако значительные успехи в изучении интуиционистской логики были достигнуты именно после того, как ее основные законы были точно сформулированы в виде исчислений, к к-рым можно было применять точные методы мат'ематич. логики. В разработке интуиционистской логики приняли значительное участие и математики, не считающие себя "интуиционистами". Более того, вопрос "веры в интуиционизм" становится второстепенным - специальные интуиционистские исчисления имеют большой чисто математич. интерес, как проясняющие различные идеи эффективности в математике. Современная тенденция в развитии И. сближает его с конструктивной математикой в самом широком понимании последнего термина.

После точной формулировки А. Рейтингом (А. Неуting) интуиционистского исчисления предикатов (см. Интуиционистская логика )была открыта топологич. интерпретация этого исчисления [А. Тарский (A. Tarski)] и интерпретация интуиционистского исчисления предикатов в виде исчисления задач (А. Н. Колмогоров). Была доказана независимость логич. связок и невозможность представления интуиционистской логики высказываний в виде конечнозначной логики (К. Гёдель). А. Рейтинг описал интуиционистское арифметическое исчисление, к-рое получается, если классическое арифметич. исчисление рассматривать на базе интуиционистского исчисления предикатов. Для исчисления предикатов и арифметич. исчисления А. Н. Колмогоров и К. Гёдель предложили погружающую операцию классич. исчисления в негативный фрагмент соответствующего интуиционистского исчисления, из к-рой, в частности, следует непротиворечивость классич. исчисления, если интуиционистское считать содержательно истинным. Были установлены свойства интуиционистской дизъюнкции и существования, состоящие в том, что если выводимо утверждение ИНТУИЦИОНИЗМ фото №3то для нек-рого терма tвыводимо A(t), а из выводимости АЪВследует выводимость Аили выводимость В. Некоторый вариант интуиционистского понимания суждений был предложен С. К. Клини (S. С. Kleene) в форме рекурсивной реализуемости. Именно такое понимание характерно для конструктивного направления в математике, развиваемого в Советском Союзе научной школой А. А. Маркова. Понимая термин "И." достаточно широко, можно рассматривать конструктивное направление в математике как разновидность И., для к-рого характерно исследование конструктивных объектов и конструктивных процессов алгоритмич. методами.

Исследовался вопрос о семантической полноте интуиционистского исчисления предикатов. Исчерпывающая алгебраич. характеристика выводимости дана в теории моделей интуиционистской логики Э. Бета (Е. Beth) и С. Крипке (S. Kripke). Эти теории имеют значительные приложения и в других разделах интуиционистской математики. Интуиционистская логика полна относительно нек-рых концепций с. с. п. и, в то же время, не полна относительно рекурсивной реализуемости. Интуиционистское понимание кванторов позволяет сформулировать в арифметике в виде математич. утверждения Чёрча тезис, напр, в форме: "если для всякого натурального числа хсуществует натуральное y, удовлетворяющее отношению ( х, у), то существует общерекурсивная функция f такая, что для всякого химеет, место ( х,f(x))", при этом отношение ( х, у )не должно содержать неконструктивных параметров типа с. с. п. В языке арифметики можно естественно сформулировать и конструктивного подбора принцип А. А. Маркова. Анализ взаимоотношений этих фундаментальных принципов в интуиционистских теориях является предметом ряда современных исследований. Удовлетворительное построение теории с. с. п. и более высоких разделов интуиционистской математики было завершено к 70-м гг. 20 в. Обычный язык формальной теории интуиционистского анализа содержит два сорта переменных: переменные х, у,z, ... для натуральных чисел и переменные a, b, у,... для с. с. п., перерабатывающих натуральные числа в натуральные. В качестве термов теория содержит символы примитивно-рекурсивных операций над функциями и числами. Атомарные формулы имеют вид равенства двух термов, кванторы употребляются по обоим сортам переменных. Теория содержит все постулаты интуиционистского арифметич. исчисления. Эта группа постулатов обеспечивает возможность вывести в теории все основные свойства примитивно-рекурсивных преобразований чисел и функций. Так, в теории можно описать взаимно однозначный способ кодирования конечных последовательностей ( кортежей )натуральных чисел натуральными числами. Пусть ( х х, ..., х п )означает номер кортежа с числами х 1, ..., х п в качестве членов; х*у есть операция сочленения кортежей, заданных номерами, т. е. если ИНТУИЦИОНИЗМ фото №4 и ИНТУИЦИОНИЗМ фото №5 то ИНТУИЦИОНИЗМ фото №6ИНТУИЦИОНИЗМ фото №7 Номер одночленного кортежа ИНТУИЦИОНИЗМ фото №8 обозначим через ИНТУИЦИОНИЗМ фото №9 Пусть ИНТУИЦИОНИЗМ фото №10 означает кортеж (a(0), . . ., a(n-1)). Введем предикат "а есть непрерывный оператор" следующим определением: ИНТУИЦИОНИЗМ фото №11 означает

ИНТУИЦИОНИЗМ фото №12

результаты применения непрерывного оператора к с. с. п. определяются следующим образом: у=a(b)означает

ИНТУИЦИОНИЗМ фото №13

и g=(a|b) означает

ИНТУИЦИОНИЗМ фото №14

Пусть, далее, (b) х означает такую функцию а, что

ИНТУИЦИОНИЗМ фото №15

С помощью приведенных определений можно точно сформулировать несколько фундаментальных принципов, относящихся собственно к с. с. п. Это прежде всего интуиционистская аксиома выбора:ИНТУИЦИОНИЗМ фото №16

принцип непрерывности Брауэра

ИНТУИЦИОНИЗМ фото №17

и бар-индукция. Эти принципы задают формальную теорию с. с. п., предложенную С. Клини, теорию, достаточную для получения в ней всех основных теорем интуиционистского анализа, включая теорему о веере, равномерную непрерывность действительных функций и др. Следует иметь в виду, что эта теория отражает лишь один вид интуиционистских последовательностей, вид, особенно пригодный для построения интуиционистского анализа. Другой характерный вид с. с. п.- беззаконные последовательности, упомянутые выше. Следующий принцип Кранзеля отражает то обстоятельство, что вся информация о беззаконной с. с. п. может быть извлечена лишь путем исследования ее начальных отрезков:

ИНТУИЦИОНИЗМ фото №18

где a - единственный параметр А(a) по с. с. п.

Еще один вид с. с. п. возникает при попытке отобразить в формальной теории существование с. с. п., зависящих от решения проблем. Для таких с. с. п. истинна так наз. схема Крипке:

ИНТУИЦИОНИЗМ фото №19

Различные интуиционистские принципы имеют место по отношению к определенным видам с. с. п. Так, для беззаконных последовательностей не выполняется в общем виде интуиционистская аксиома выбора, а последовательности, зависящие от решения проблем, не удовлетворяют принципу непрерывности Брауэра в том его виде, к-рый был указан выше. Гораздо менее разработаны формальные теории для отражения интуиционистской теории видов. Однако и здесь имеются попытки сформулировать специфически интуиционистские способы обращения с видами. Напр., если X- переменная для видов натуральных чисел, то можно принять следующую схему аксиом, предложенную А. Троэльстра [4]:

ИНТУИЦИОНИЗМ фото №20

До 2-й половины 20 в. идеи Л. Э. Я. Брауэра в полном объеме оставались достоянием узкой группы математиков-интуиционистов, хотя они и оказали большое влияние на все дальнейшие исследования по основаниям математики. В последнее время положение изменилось. Развитие теории доказательств позволило оформить в виде точных исчислений основные интуиционистские теории и подвергнуть их точному исследованию. Развитие вычислительной тенденции в математике пробудило интерес к логич. анализу эффективных средств доказательства и изучению абстракций, применяемых в математике. Возникли различные программы конструктивной перестройки математики в той или иной концепции конструктивности. Синтез традиционных методов И. с современными методами теории доказательств позволил значительно продвинуться в И.

Лит.:[1] Гейтинг А., Интуиционизм, пер. с англ., М., 1965; [2] Кlееne S. С, Vеslеу R. E., The foundations of intuitionistic mathematics, Amst., 1965; [3] Кrеisel G., Trоelstra A. S., "Ann. Math. Logic", 1970, v. 1, №3, p. 229-387; [4] TroelstraA. S., Metamathematical investigation of intuitionistic Arithmetic and Analysis, В., 1973 (Lect. Notes in Math., №344); [5] Мартин-Лёф П., Очерки по конструктивной математике, пер. с англ., М., 1975; [6] Френкель А., Бар-Хиллел И., Основания теории множеств, пер. с англ., М., 1966.

А. Г. Драгалин.


Смотреть больше слов в «Математической энциклопедии»

ИНТУИЦИОНИСТСКАЯ ЛОГИКА →← ИНТЕРПРЕТАЦИЯ

Смотреть что такое ИНТУИЦИОНИЗМ в других словарях:

ИНТУИЦИОНИЗМ

        в математике, философское направление, отвергающее теоретико-множественную трактовку математики и считающее интуицию (См. Интуиция) единственны... смотреть

ИНТУИЦИОНИЗМ

ИНТУИЦИОНИЗМ (от позднелат. intuitio, от лат. intueor — пристально смотрю) — направление в обосновании математики и логики, согласно которому конеч... смотреть

ИНТУИЦИОНИЗМ

филос. направление в математике и логике, отказывающееся от использования идеи актуальной бесконечности, отвергающее логику как науку, предшествующую математике, и рассматривающее интуитивную убедительность ("интуицию") как последнее основание математики и логики. И. возник на рубеже 19 и 20 вв. прежде всего как реакция на теорию множеств Кантора, в к-рой нашла наиболее полное выражение идея актуальной бесконечности – одна из осн. идей классич. математики и логики. Оформление И. происходило в обстановке кризиса оснований математики, толчок к-рому дало обнаружение парадоксов. Интуиционистская критика классич. математики углубила этот кризис и способствовала широкой постановке проблем обоснования математики и логики. Критич. замечания по поводу использования идеи актуальной бесконечности имеются уже у нем. математика К. Гаусса. Кронекер ставил под сомнение методы классич. математики, резко выступал против взглядов Кантора. Более близким предшественником И. можно считать Пуанкаре. Основоположником И. является голл. математик Л. Э. Я. Брауэр (p. 1881), выступивший в 1907 с критикой основ классич. математики. В дальнейшем интуиционистская т. зр. на математику получила развитие в работах как самого Брауэра, так и его последователей – Г. Вейля, А. Гейтинга и др. Взамен отвергаемого понятия актуальной бесконечности и наивного понимания существования в математике (при к-ром это понятие считается не нуждающимся в к.-л анализе) И. кладет в основу своего подхода понятие потенциальной бесконечности и связанное с ним понимание существования математич. объектов как возможности (хотя бы в принципе) их построения. При этом он отвергает идею о том, что в основании математики должна лежать (дедуктивная) логика. Согласно Брауэру, математика тождественна с точной частью человеч. мышления; с его т. зр. попытки обоснования математики средствами логики приводят к порочному кругу, т.к. логика, будучи составной частью точного мышления, является тем самым частью математики. Радикальная критика классич. логики привела И. к формулировке собств. логич. воззрений, получивших название интуиционистской логики. Характерной чертой филос. установок И. является понимание интуиции как последнего основания достоверности суждений. При этом под интуицией, т.е. интуитивной убедительностью и интуитивной ясностью, понималась непреложная умозрительная или наглядная очевидность, присущая элементарным шагам рассуждения, отд. суждениям или отд. понятиям; примером интуитивно убедительного, с т. зр. И., суждения может быть суждение "0=0" или суждение "Из А следует А" (для данного конкретного суждения А); одним из интуитивно ясных понятий интуиционисты считали натуральный ряд чисел 1, 2, 3, ...Отличит. особенностью И. является отказ от попыток точного определения таких понятий, как "доказательство", "построение", а также самого понятия "интуиция". Интуиционисты считают, с одной стороны, что математические (т.е. относящиеся к точной части нашего мышления) доказательства и построения должны обладать достаточной интуитивной ясностью (так, что если относительно к.-л. рассуждения возникает сомнение в том, является ли оно, напр., доказательством, его и не следует считать таковым); с др. стороны, они убеждены, что нет оснований признавать к.-л. попытку определения этих понятий вводящей (уточненное) понятие, адекватное первоначальному (неуточненному) понятию, т.к. с т. зр. И. представляется невозможным охватить одним определением все те способы рассужде-ния, к-рые могут когда-либо оказаться интуитивно убедительными. То же самое относится к понятию построения (к понятию функции, закона соответствия) с той лишь разницей, что вместо интуитивной убедительности речь должна идти об интуитивной ясности построения. Уже в этом подходе подчеркнута роль субъективного момента в познании. Ведущие представители И., и прежде всего Брауэр, идут, однако, гораздо дальше. Ссылаясь на то, что интуитивная убедительность связана с субъектом, истолковывающим те или иные математич. построения, они переходят на позиции откровенного субъективизма, утверждая, напр., что может быть столько математик, сколько есть математиков. У самого Брауэра субъективизм принял волюнтаристич. оттенок – Брауэр утверждает, что математика есть нек-рый вид человеч. деятельности, с помощью к-рой человек вносит порядок в окружающий его мир и подчиняет его, в т.ч. и др. людей, своей воле. Классич. математика, т.е. математика, опирающаяся на теорию множеств Кантора, широко пользуется понятием актуальной бесконечности, позволяя считать существующими любые бесконечные множества и оперировать с ними как с завершенными целыми; при этом она игнорирует вопрос о том, в каком смысле можно утверждать существование таких множеств. Для нее характерно представление об актуально бесконечном множестве как о чем-то завершенном, существующем до и независимо от всякого процесса порождения, как о чем-то, что может лежать перед нами и быть доступным нашему обозрению; при этом считается само собой разумеющимся, что о бесконечных множествах можно рассуждать по законам классич. логики. С др. стороны, в математике имеется представление о неограниченно растущем (но конечном в каждый момент времени) множестве уже порожденных объектов, т.е. о потенциально бесконечной последовательности. При этом приходится отвлекаться, напр., от ограниченности наших возможностей в рассмотрении хотя и конечных, но чрезмерно больших множеств, от ограниченности нашей жизни и т.д. И. допускает использование в доказательствах лишь понятия потенциальной бесконечности, считая понятие актуальной бесконечности бессмысленным. В математике существование объекта понимается обычно как возможность (хотя бы в принципе) "предъявить" его и осмысленно оперировать с ним. С т. зр. теории множеств предъявление объекта считается в принципе возможным даже в том случае, если оно требует перебора всех элементов нек-рого бесконечного множества или даже всех его подмножеств. И. же, отказываясь от актуальной бесконечности, признает предъявление объекта возможным лишь тогда, когда указан метод его построения. Критика актуальной бесконечности имеет два аспекта, соответствующих различным ступеням употребления этой идеи. Первый аспект встречается в классич. арифметике натуральных чисел и состоит в допущении свободного рассмотрения натурального ряда как законченной совокупности, об элементах к-рой можно рассуждать по законам классич. логики. Второй аспект обнаруживается при переходе к множеств теории или типов теории, когда вместе с бесконечным множеством считается данной совокупность всех его подмножеств; этот аспект данной идеи обнаруживается уже в классич. теории действит. чисел. С логич. т. зр. при переходе от первого аспекта ко второму возникает новый трудный момент – непредикативные определения. Концепция, состоящая в недопущении лишь второго аспекта идеи актуальной бесконечности, наз. предикативизмом; эту концепцию, на к-рой стоял, напр., Вейль (см. Н. Wehl, Das Kontinuum. Kritische Untersuchungen ?ber die Grundlagen der Analyse, Lpz., 1918) до своего перехода к И., не следует смешивать с И., не допускающим актуальную бесконечность в любой форме. Будучи крайне критичным по отношению к тому, что явно наз. бесконечностью, И. отвлекается от трудностей, связанных с понятием произвольного конечного объекта. И. принимает допущение о том, что натуральный ряд является однозначно определенной последовательностью, известной нам "наизусть" и продолжаемой нами по определ. закону. Принимая абстракцию потенциальной осуществимости, И. не замечает того, что для таких больших чисел, как 101010 никакое построение их в качестве элементов ряда 0, 1, 2, 3, ... не удается даже с помощью этой абстракции, ибо требует 101010 шагов, так что само существование этих чисел в натуральном ряду не удается доказать без порочного круга (т.к. построение потенциально осуществимого объекта следует считать возможным лишь при условии, что оно м. б. осуществлено в натуральное число шагов), что разрушает убедительность тех утверждений о такого рода числах, к-рые доказываются посредством математич. индукции. Важную роль в И. играет критика логич. принципов, лежащих в основе классич. математики. Эта критика тесно связана с пониманием существования в математике. Напр., И. не может признавать доказательств существования, проведенных методом от противного, т.к. нет основания утверждать, что существует метод, позволяющий извлекать из рассуждений от противного способ построения нужного объекта. Допустив, что нужного объекта не существует и сведя это предположение к противоречию, мы вначале получаем как следствие лишь отрицание того, что нужный объект не существует. Классич. математика и логика делают отсюда вывод о существовании искомого объекта, основываясь на законе снятия двойного отрицания. И. же отказался признать убедительным не только доказательства от противного в применении к утверждениям о существовании, но и доказательства от противного в общем случае, а также закон снятия двойного отрицания и закон исключенного третьего, поскольку для этих законов не находилось интуитивного обоснования. Интуиционистский подход к проблеме существования определяет и характерное для И. понимание дизъюнкции. Утверждение суждения A/B означает, по существу, утверждение того, что в множестве из двух суждений A и В существует элемент, обладающий свойством "быть истинным". Классич. математика и логика считают такое утверждение доказанным, напр., в том случае, когда утверждение об одновременной ложности обоих суждений А и В опровергнуто приведением к противоречию. Но с т. зр. И. утверждение А/В может считаться доказанным лишь тогда, когда указан метод, позволяющий выяснить, какое именно, из двух суждений А и В истинно. Дизъюнкция существенно участвует в формулировке принципа исключенного третьего: A/А. Если мы попытаемся применить этот закон, напр., к "великой теореме" Ферма (утверждающей, что не найдется такой четверки х, у, z, n целых положит. чисел, что n?2 и xn+yn=zn), то увидим, что из этого ничего не выйдет; до сих пор не только не удалось доказать или опровергнуть эту теорему, но, более того, не известен метод, следуя к-рому можно было бы в конце концов установить ее истинность или ложность. Чтобы спасти закон исключенного третьего от критики И., недостаточно было бы изобрести метод, позволяющий доказать или опровергнуть теорему Ферма, нужно найти метод, годящийся для решения не только всех нерешенных математич. проблем, но и для любых проблем, к-рые появятся когда-либо в будущем. Сомнения в возможности существования такого метода (ср. Алгоритм) явились для И. убедит. аргументом для неприятия закона исключенного третьего. Суждение всеобщности ?xА(x) И. всегда понимает как утверждение о наличии метода, к-рый, коль скоро указан нек-рый предмет x из предметной области М, дает интуитивно ясное доказательство того, что этот предмет обладает свойством А (в отличие от классич. математики и логики, в к-рых это суждение может пониматься как утверждение о фактич. положении вещей в нек-рой конечной или бесконечной области М). Методом доказательства суждений всеобщности, приемлемым с т. зр. И., является математич. индукция. Сходным образом понимается И. и условное суждение. В отличие от классич. понимания импликации, И. понимает суждение A?B как утверждение о наличии интуитивно ясного метода перехода, к-рый по каждому интуиционистски приемлемому доказательству суждения А дает интуиционистски приемлемое доказательство суждения В. Суждение A с т. зр. И. может пониматься как утверждение о наличии метода, позволяющего интуитивно ясно вывести противоречие из предположения об истинности А. На это понимание осн. логич. понятий распространяется, конечно, субъективизм взглядов интуиционистов. Но в применении к отд. математич. доказательствам субъективизм преодолевался благодаря характерной для И. тенденции понимать интуицию (в смысле интуитивной убедительности, интуиционистской приемлемости и т.п.) в самом узком смысле – так, чтобы практически для всех математиков исчезло бы сомнение в том, что рассматриваемое рассуждение или утверждение является интуитивно убедительным. В частности, Гейтингом была построена такая формальная система (см. Логика высказываний и Предикатов исчисление), что выразимые в ней содержат. рассуждения приемлемы с т. зр. Брауэра. Следует отметить, что имеются разные варианты И., различие между к-рыми связано гл. обр. с принятием или неприятием отд. логич. принципов. Важным примером этого рода является недостаточная интуитивная убедительность логич. закона А&А?В. Неочевидность этого закона связана с невозможностью указать такую ситуацию, в к-рой имеет место А&А, чем серьезно затрудняется интуитивное обоснование этой импликации. Брауэр принимал этот закон, но нек-рые интуиционисты (Иогансон и др.) от него отказываются; логич. система, получающаяся из системы Гейтинга путем отказа от этого закона, называется минимальным исчислением. Осуществляя перестройку математики на основе предложенных им принципов, И. создал теорию действит. континуума, теорию множеств и др. Свои математич. теории (начиная с математич. анализа) интуиционисты строят, используя кажущееся им интуитивно ясным понятие свободно становящейся последовательности. Уже в своей теории действит. чисел И. столкнулся с необходимостью говорить не только об отд. действит. числах (о них можно говорить, напр., как о процессах, порождающих отрезки с рацион. концами, такие, что каждый последующий отрезок вложен в предыдущий, а длина последующего не превосходит половины длины предыдущего отрезка), но и обо всех действит. числах. Считая перечисление всех интуитивно ясных методов построения и определения невозможным и ненужным, И. не мог поэтому в этих случаях доказывать нечто о процессах, порождающих все нужные объекты, напр. говорить о всех методах, задающих действит. числа, т.к. задание этих процессов предполагает перечисление. Чтобы преодолеть эту трудность, И. и ввел понятие свободно становящейся последовательности. Каждую свободно становящуюся последовательность можно описать (в терминах, отличных от интуиционистских) следующим образом. Пусть имеется нек-рый запас конечных объектов и условие, для к-рого интуитивно ясно, что каков бы ни был объект из данного запаса, относительно этого объекта можно выяснить, удовлетворяет ли он или нет этому условию. Далее последовательно производятся акты произвольного выбора объектов, пока не будет найден объект, удовлетворяющий условию. Этот объект объявляется следующим членом реализации данной свободно становящейся последовательности. Для доказательства теорем о континууме интуиционисты рассматривают, напр., такую свободно становящуюся последовательность: выбираемые объекты – отрезки прямой с рацион. концами, условие таково – последующий отрезок вложен в предыдущий и длина его не более половины длины предыдущего. Относительно свободно становящихся последовательностей имеет смысл высказывать лишь такие предложения, истинностное значение к-рых может быть установлено на основании исследования конечного числа первых членов реализации и к-рое не меняется, как бы далеко ни продолжалась эта реализация. Используя это понятие, И. смог перейти от сомнений в истинности нек-рых принципов классич. логики к их опровержению. Так, было установлено, что с т. зр. И. утверждение о том, что любые два действит. числа либо равны, либо не равны является неверным. Однако понятие свободно становящейся последовательности, казавшееся интуитивно ясным самим интуиционистам, оказалось неясным для др. математиков. В отличие от И., конструктивные направления в математике и логике, в частности направления А. А. Маркова и Н. А. Шанина, развились на основе понятия алгоритма, вводимого различными определениями (рекурсивные функции, нормальные алгорифмы и т.д.). При этом интуиционистские логич. исчисления получили новое истолкование в духе конструктивного понимания математич. суждений (Н. А. Шанин) и оказались логич. исчислениями конструктивной логики. Значит. роль в разработке конструктивного понимания суждений сыграло предложенное Колмогоровым (1932) истолкование интуиционистского исчисления высказываний как исчисления задач, а также понятие реализуемой формулы, введенное Клини (1945). Лит. см. при ст. Конструктивная логика. ... смотреть

ИНТУИЦИОНИЗМ

        ИНТУИЦИОНИЗМ — одно из трех главных направлений (наряду с логицизмом и формализмом), традиционно выделяемых в основаниях математики. Для общей ... смотреть

ИНТУИЦИОНИЗМ

ИНТУИЦИОНИЗМ — направление в обосновании математики и логики, согласно которому конечным критерием приемлемости методов и результатов этих наук является наглядно-содержатель­ная интуиция. Вся математика должна опираться, согласно И., на интуитивное представление ряда натуральных чисел и на прин­цип математической индукции, истолковываемый как требование действовать последовательно, шаг за шагом; допускаются лишь конструктивные доказательства существования рассматриваемого объекта, указывающие способ его построения. Создателем И. является голландский математик Л. Э. Я. Брауэр (1881 — 1966). В начале XX в. он выдвинул программу радикальной перестройки математики, противопоставив ее концепции сведе­ния математики к логике (см.: <i>Логицизм</i>)<i> </i>и истолкованию мате­матики исключительно как языка математических символов (см.: <i>Формализм</i>). Представители И. полагают, что чистая математика является мыслительной активностью, не зависящей от языка, ее объект -нелингвистические математические конструкции. Язык служит лишь для сообщения математических идей, математика не сво­дится к языку и тем более не может быть истолкована как особый язык. Предметом исследования (математической) логики являет­ся математический язык, более или менее адекватно передающий математические построения. Логика вторична по отношению к ма­тематике, последняя не может быть обоснована с помощью логи­ческих средств. Основной тезис интуиционистов гласит, что существование в математике — это то же самое, что конструктивность, или "построяемость". Из существования математического объекта вытека­ет его непротиворечивость, но не наоборот: не каждый непроти­воречивый объект существует. Построение является единственным средством обоснования в математике. Интуиционисты подвергли резкой критике <i>закон исключенного третьего</i>,<i> закон </i>(снятия) <i>двойного отрицания </i>и ряд других зако­нов <i>логики классической</i>.<i> </i>Согласно Брауэру, логические законы не являются абсолютными истинами, не зависящими от того, к чему они прилагаются. Закон исключенного третьего, верный в случае конечной математики, неприменим в рассуждениях о бесконечных множествах. Объекты бесконечного множества невозможно пере­брать. Если в процессе перебора не удалось найти элемент с требу­емым свойством, ни утверждение о существовании такого объекта, ни отрицание этого утверждения не является истинным. Критика И. классической логики привела к созданию нового направления в логике — <i>интуиционистской логики</i>. Одновременно с Брауэром сомнения в универсальной прило­жимости закона исключенного третьего высказал рус. философ и логик Н. А. Васильев (1880-1940). Он ставил своей задачей постро­ение такой системы логики, в которой была бы ограничена не только сфера действия этого закона, но и <i>непротиворечия закона</i>.<i> </i>Казавшиеся парадоксальными, идеи Васильева не были в свое время оценены по достоинству. <br><br><br>... смотреть

ИНТУИЦИОНИЗМ

направление в обосновании математики и логики, согласно которому конечным критерием приемлемости методов и результатов этих наук является наглядно-сод... смотреть

ИНТУИЦИОНИЗМ

направление в основаниях математики и логики, признающее главным и единственным критерием правомерности методов и результатов этих наук их интуитивную наглядносодержат. убедительность («интуицию»). И. отвергает использование в математике и логике идеи актуальной бесконечности (см. Абстракция актуальной бесконечности) и взгляд на логику как на науку, «предшествующую» математике. Гл. объектом интуиционистской критики стал широко используемый в классич. математике исключённого третьего принцип. Идеи И.., высказывавшиеся ещё нем. математиком Л. Кронекером и А. Пуанкаре, в явном виде были сформулированы в нач. 20 в. голл. учёным Л. Э. Я. Брауэром и развиты Г. Вейлем (Германия) и ?. Гейтингом (Нидерланды). Гл. причину парадоксов (противоречий, антиномий) классич. математики и логики И. усматривает в представлении, что математику можно «обосновать» какими бы то ни было логич. средствами. С т. зр. И. математику надлежит строить исключительно посредством тех её средств (удовлетворяющих, в частности, требованию эффективности, конструктивности получаемых с их помощью абстрактных понятий), интуитивная убедительность (в случае доказательств и выводов) или интуитивная ясность (в случае конструкций, построений) к-рых не вызывает никаких сомнений. Для И. понятия «доказательство» и «построение» (как и понятие «интуиция») не могут быть охвачены к.-л. одним «точным» определением. Поэтому никакая система интуиционистски приемлемых правил рассуждений, умозаключений и доказательств не может и не должна кодифицироваться в качестве раз навсегда закреплённой и принятой логики. Только с учётом подобного фундаментального принципа И. можно в нек-ром смысле считать интуиционистскую логику Гейтинга адекватной идеям этого направления: главное в И. не логика, а интерпретация применяемых логич. средств и математич. рассуждений. В то же время интуиционистская математика может быть описана в виде нек-рого исчисления [см. К л и н и С. К., В е с л и Р., Основания интуиционистской математики с т. зр. теории рекурсивных функций, пер. с англ., 1978 (библ.)]. Идеи И. оказали большое влияние на конструктивное направление. Осн. отличие конструктивизма от И. состоит в том, что неопределяемое и неизбежно субъективное понятие интуиции заменяется в первом к.-л. разновидностью точно определяемого понятия алгоритма (или вычислимой, рекурсивной функции).... смотреть

ИНТУИЦИОНИЗМ

интуициони́зм (лат.) одно из направлений в философия математики, в котором подвергаются критикеоснования теории множеств; интуиционисты считают интуиц... смотреть

ИНТУИЦИОНИЗМ

1) Орфографическая запись слова: интуиционизм2) Ударение в слове: интуицион`изм3) Деление слова на слоги (перенос слова): интуиционизм4) Фонетическая т... смотреть

ИНТУИЦИОНИЗМ

ИНТУИЦИОНИЗМ а, м. intuitionnisme &LT;лат. мат. Одно из направлений в философии математики, в котором подвергаются критике основания теории множеств. ... смотреть

ИНТУИЦИОНИЗМ

Ударение в слове: интуицион`измУдарение падает на букву: иБезударные гласные в слове: интуицион`изм

ИНТУИЦИОНИЗМ

Тмин Тиун Тимин Тим Оун Оним Омут Озу Нут Нтц Нто Ноу Ном Ниц Нитон Нит Нии Низом Низ Муцин Мутон Мутно Мунит Музон Тоз Том Томин Тон Туз Мотин Мот Монт Тун Тунин Узи Митоз Миот Узин Умно Унион Миозит Миозин Миоз Мио Ионит Иомут Унт Цинизм Цитизин Интимно Изот Изм Зимин Цум Зинин Зонт Зот Инозин Инозит Интим Цоизит Цмин Цитозин Унионизм Интуиционизм Ион... смотреть

ИНТУИЦИОНИЗМ

ИНТУИЦИОНИЗМ, направление в основаниях математики, полагающее критерием убедительности доказательства интуитивную ясность каждого его шага; не признает т. н. абстракцию актуальной бесконечности, характерную для множеств теории.<br><br><br>... смотреть

ИНТУИЦИОНИЗМ

ИНТУИЦИОНИЗМ - направление в основаниях математики, полагающее критерием убедительности доказательства интуитивную ясность каждого его шага; не признает т. н. абстракцию актуальной бесконечности, характерную для множеств теории.<br>... смотреть

ИНТУИЦИОНИЗМ

направление в основаниях математики, полагающее критерием убедительности доказательства интуитивную ясность каждого его шага; не признаёт т. н. абстрак... смотреть

ИНТУИЦИОНИЗМ

ИНТУИЦИОНИЗМ , направление в основаниях математики, полагающее критерием убедительности доказательства интуитивную ясность каждого его шага; не признает т. н. абстракцию актуальной бесконечности, характерную для множеств теории.... смотреть

ИНТУИЦИОНИЗМ

ИНТУИЦИОНИЗМ, направление в основаниях математики, полагающее критерием убедительности доказательства интуитивную ясность каждого его шага; не признает т. н. абстракцию актуальной бесконечности, характерную для множеств теории.... смотреть

ИНТУИЦИОНИЗМ

учение об основаниях математики и логики, признающее главным критерием интуитивную, наглядно-содержательную убедительность.

ИНТУИЦИОНИЗМ

метод философского анализа, основанный на интуиции. Последовательный представитель этого метода – Бергсон.

ИНТУИЦИОНИЗМ

метод философского анализа, основанный на интуиции. Последовательный представитель этого метода — Бергсон.

ИНТУИЦИОНИЗМ

Начальная форма - Интуиционизм, винительный падеж, единственное число, мужской род, неодушевленное

ИНТУИЦИОНИЗМ

лат.) - учение об интуиции как самом главном и самом надежном источнике познания.

ИНТУИЦИОНИЗМ

(лат.) учение об интуиции как самом главном и самом надежном источнике познания.

ИНТУИЦИОНИЗМ

интуицион'изм, -а

ИНТУИЦИОНИЗМ

интуиционизм интуицион`изм, -а

ИНТУИЦИОНИЗМ

матем. інтуїціоні́зм, -му

ИНТУИЦИОНИЗМ

интуиционизм [

ИНТУИЦИОНИЗМ

інтуіцыянізм

ИНТУИЦИОНИЗМ

интуиционизм

ИНТУИЦИОНИЗМ (МАТЕМАТИЧЕСКИЙ)

— одно из направлений в философии математики (Л. Кронекер, А. Пуанкаре, Л. Брауэр, Г. Рейтинг), представители которого предложили новую концепцию предмета и обоснования математики, резко противопоставив ее не только эмпиристской, объективно-идеалистической (платонизм) и наивно-интуиционистской (Декарт) традициям в истолковании предмета и природы математики, но и таким новым направлениям философии математики XX в. как логицизм (Фреге, Рассел и др.) и формализм (Гильберт, Гедель и др.). Согласно интуиционистам, математика есть синоним максимально однозначных и доказательных построений человеческого разума. Математические объекты и структуры конструируются человеческим мышлением, и до него и вне него не существует. Математическое знание является содержательным, синтетическим, имеющим интуитивную основу, однако в математике допускается только элементарная, так называемая «глобальная» интуиция, которая в силу своей элементарности находится под максимально возможным контролем человеческого сознания. Назначение этой интуиции состоит во введении элементарных единиц содержания и способности их различения или отождествления. Например, глобальная интуиция способна однозначно различить такие элементарные объекты как 0 и 1, все остальные объекты математики должны быть построены из элементарных с: помощью простых операций, которые однозначно контролируются глобальной интуицией (например, и — ). Согласно интуиционистам, в математике слово «существовать» должно означать только одно — «быть построенным» в конечное количество шагов под контролем глобальной интуиции. На этом основании интуиционисты отказывают в законности понятию «актуально бесконечное множество» (допускаемого в классической математике: в теории множеств и арифметике). Понятие «актуальной бесконечности» предлагается из математики удалить и ввести вместо него понятие «потенциальной бесконечности», понимаемой как конечная последовательность, которая реально всегда может быть продолжена. Закон исключенного третьего, широко используемый при доказательствах в классической математике, должен быть ограничен только его применением в рассуждениях о конечных множествах. Не является универсальным, с точки зрения интуиционистов, и закон двойного отрицания (А = А). Общий вывод интуиционистов в отношении классической математики очень категоричен: вся классическая математика — ненадежная и нестрогая наука, и поэтому требуется построить новую математику, отвечающую более строгим критериям, предложенных интуиционистами. Усилиями многих представителей интуиционизма и конструктивизма в XX в. были перестроены с позиций новых требований строгости многие разделы классической математики. Сначала многие математики расценивали эти построения как проявление крайнего педантизма, не имеющие никакого теоретического и практического значения для реально работающей математики. Только с развитием вычислительной техники, компьютеров, машинной математики оказалось, что наиболее эффективным языком математических программ для этой техники является язык именно конструктивной математики. (См. логицизм, формализм, философия, математика).... смотреть

ИНТУИЦИОНИЗМ (ФИЛОСОФСКИЙ)

— гносеологическая концепция (Сократ, Платон, Аристотель, Августин, Декарт, Лейбниц, Бергсон и др.), согласно которой, наряду с аналитическими процедурами (анализ, синтез, абстрагирование, рассуждения, выводы, мысленное конструирование и др.), мышление обладает и некоторой синтетической, интегральной способностью схватывать, усматривать в предметах и процессах познания их сущность, существенность, необходимость, причастность к Истине. Согласно интуиционистам, истинные основоположения наук, их фундаментальные законы, принципы и аксиомы могут быть постигнуты только в актах интуиции достаточно развитого мышления и сознания (См. мышление, сознание, синтез).... смотреть

T: 89